Yap1p activates gene transcription in an oxidant-specific fashion.

نویسندگان

  • S T Coleman
  • E A Epping
  • S M Steggerda
  • W S Moye-Rowley
چکیده

Positive regulation of gene expression by the yeast Saccharomyces cerevisiae transcription factor Yap1p is required for normal tolerance of oxidative stress elicited by the redox-active agents diamide and H(2)O(2). Several groups have provided evidence that a cluster of cysteine residues in the extreme C terminus of the factor are required for normal modulation of Yap1p by oxidant challenge. Deletion of this C-terminal cysteine-rich domain (c-CRD) produces a protein that is highly active under both stressed and nonstressed conditions and is constitutively located in the nucleus. We have found that a variety of different c-CRD mutant proteins are hyperactive in terms of their ability to confer diamide tolerance to cells but fail to provide even normal levels of H(2)O(2) resistance. Although the c-CRD mutant forms of Yap1p activate an artificial Yap1p-responsive gene to the same high level in the presence of either diamide or H(2)O(2), these mutant factors confer hyperresistance to diamide but hypersensitivity to H(2)O(2). To address this discrepancy, we have examined the ability of c-CRD mutant forms of Yap1p to activate expression of an authentic target gene required for H(2)O(2) tolerance, TRX2. When assayed in the presence of c-CRD mutant forms of Yap1p, a TRX2-lacZ fusion gene fails to induce in response to H(2)O(2). We have also identified a second cysteine-rich domain, in the N terminus (n-CRD), that is required for H(2)O(2) but not diamide resistance and influences the localization of the protein. These data are consistent with the idea that the function of Yap1p is different at promoters of loci involved in H(2)O(2) tolerance from promoters of genes involved in diamide resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor.

The yeast AP-1-like transcription factor, Yap1p, activates genes required for the response to oxidative stress. Yap1p is normally cytoplasmic and inactive, but will activate by nuclear translocation if cells are placed in an oxidative environment. Here we show that Yap1p is a target of the beta-karyopherin-like nuclear exporter, Crm1p. Yap1p is constitutively nuclear in a crm1 mutant, and Crm1p...

متن کامل

Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks.

Ohno [Ohno, S. (1970) in Evolution by Gene Duplication, Springer, New York] proposed that gene duplication with subsequent divergence of paralogs could be a major force in the evolution of new gene functions. In practice the functional differences between closely related homologues produced by duplications can be subtle and difficult to separate experimentally. Here we show that DNA microarrays...

متن کامل

Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response.

Saccharomyces cerevisiae Skn7p is a stress response transcription factor that undergoes aspartyl phosphorylation by the Sln1p histidine kinase. Aspartyl phosphorylation of Skn7p is required for activation of genes required in response to wall stress, but Skn7p also activates oxidative stress response genes in an aspartyl phosphorylation-independent manner. The presence of binding sites for the ...

متن کامل

Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation.

Yap1p, a crucial transcription factor in the oxidative stress response of Saccharomyces cerevisiae, is transported in and out of the nucleus under nonstress conditions. The nuclear export step is specifically inhibited by H(2)O(2) or the thiol oxidant diamide, resulting in Yap1p nuclear accumulation and induction of transcription of its target genes. Here we provide evidence for sensing of H(2)...

متن کامل

Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents.

The bZip transcription factor Yap1p plays an important role in oxidative stress response and multidrug resistance in Saccharomyces cerevisiae. We have previously demonstrated that the FLR1 gene, encoding a multidrug transporter of the major facilitator superfamily, is a transcriptional target of Yap1p. The FLR1 promoter contains three potential Yap1p response elements (YREs) at positions -148 (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 1999